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t lnstituut voor Theoretische Fysica, Universiteit van Amsterdam, Valckenierstraat 65, 
1018 XE Amsterdam, The Netherlands 
$ Department of Applied Mathematics, Institute of Advanced Studies, Australian National 
University, Canberra ACT 2601, Australia 

Received 27 November 1991 

Abetr~cl. The central charge of the Izergin-Korepin model, the corresponding quantum 
spin chain, and the O ( n )  model is calculated analytically via the Bethe ansatz. T h e  
calculation extends a technique recently developed for the Zamolodchikov-Fateev model. 
In addition critical exponents and the central charge for these models are obtained from 
numerical solutions of the Bethe ansatz equations For finite systems. As a physical applica- 
tion we find the exponents v = g  and y=g far the O-transilia” of polymers in two 
dimensions. 

1. Introduction 

Among its physical applications, studies of the O ( n )  model have shed light on the 
statistics of long polymer chains in the n = O  limit [1,2]. For a specific choice of 
interactions, the O(n) partition function can be expressed in terms of a loop model 
[3]. This equivalence, along with a further mapping to the Coulomb gas, enabled 
Nienhuis [l] to determine the critical behaviour of the O(n)  model on the honeycomb 
lattice in the range - 2 C n r 2 .  Baxter [4] then obtained the exact value of the free 
energy fm per vertex at the critical point via the Bethe ansatz (BA) solution of the 
related vertex model. Subsequently, the central charge c was calculated from the leading 
finite-size correction to the free energy per site. For a spatially isotropic system, which 
is periodic and of finite extent L in one direction and infinite in the other, the free 
energy scales as [5,6] 

The result 171, 

3 ( n  -20)’ 
770 

c = l -  (1.2) 

where n = -2 cos 20 (Or  0 s  n), is in agreement with a previous conjecture [8] and 
with that obtained from a mapping to the Gaussian model [5] and the Coulomb gas [9]. 

0305470/92/113077+19$04.50 0 1992 IOP Publishing Ltd 3077 
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More recently, Nienhuis [ lo ,  111 has obtained a more general solvable O ( n )  model 
on the square lattice. In this model the n-vector spins live on the edges of a square 
lattice, and are coupled via nearest-neighbour, second-neighbour and four-spin interac- 
tions between the spins around each vertex. The terms of the high-temperature 
expansion of the partition sum can be represented as combinations of non-intersecting 
polygons on the lattice [ I l l .  These polygon configurations in turn can be mapped onto 
the configurations of the Izergin-Korepin model [12]. In this model the edges of the 
square lattice can be in three states, and 19 of the possible configurations around each 
vertex are allowed, as shown in figure 1.  The weights wi of the 19 vertices, in the 
notation of Nienhuis [ l l ]  (24 + e),  are given by 

U,=-sin # coste+sin(g+:e)cos($-ae) 
U 2 = U 4 =  -e-U-iO/2 ' sin # cos($-ae) 
-o - iy+is/2 . ,- s--e sin e cos($-:e) 

Ug = U* = i ei*-is/2 sin ' #sin($++#) 
. -i*+ie/2 . w,= w9=  --I e 

w I 0 =  U,, = w j 2 =  wi3 = sin($+@) cos($ - ;e)  
wI4= wIS =sin($ - i o )  cos($-te) 

u , ~ =  mi, = sin($ +@) cos( $ + a # )  
w18 = -sin @(cos e t i  e-2i* sin ;e)  
wi9=-sin #(cos e- ie2 '*sinfe) ,  

sin esin($+:#) 

The number of spin components n is parametrized by 0 via n = -2 cos 29. With the 
variable I), called the spectral parameter, the spatial anisotropy of the interactions can 
be varied. In the limit $ =-:e the transfer matrix reduces to a trivial shift operator. 
The logarithmic derivative with respect to $ in this point gives the Hamiltonian of an 
anisotropic quantum spin-1 chain with bilinear and biquadratic interactions, which 
depending on 0 can be both ferro- and antiferromagnetic. The form of this Hamiltonian 
is given in (6.1). 

The transfer matrix has been diagonalized via the so-called analytic ansatz [13]. 
The eigenvalues have since been obtained via both the coordinate [14] and algebraic 
BA [15]. The connection between the O ( n )  and the Izergin-Korepin models has also 
been discussed recently by Reshetikhin [ 161. More generally the Izergin-Korepin model 
can be identified with the twisted affine Lie algebra Ai2) and thus belongs to the AL2) 
family of exactly solvable lattice models [17]. 

+++++++++ 
1 2 3 4 5 6 7 8 9 

++++++++++ 
10 11 I 2  13 14 15 ' 6  17 18 19 

Figure 1. The vertices of the Izergin-Korepin model 
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The transfer matrix eigenvalues of the Izergin-Korepin model are given by 

I sinh(u, -;io +i$) 
,=, sinh( uj -ai0 +i$) 

A($)=[sin($+tO) cos($+f0)lLs n . 

I sinh(u, +ai0 + i$) cnsh(uj - t ie  +i$) 
sinh(o,-fi@+i$) cosh(u,+$iO+i$) 

+ [ s i n ( $ + i ~ ) c o s ( $ - t e ) ] ~  n . 

1 cosh( u, +;is +i$) 
j = ,  cosh( u, +$O+i+) 

+[sin($ -@) COS($-@)]~S-' n 
where U,, j = 1,.  . . , I ,  are the solutions of the BA equations, 

' sinh(u, - uk -io) cosh(u, - uk+fiO) I L = - .  * = I  n sinh(u, . - uk+iB) cosh(uj-uk-$O)' (1.5) 

The factor s = e*+ is a 'seam', necessary to make the connection between the O( n) and 
vertex models exact for a finite system [14]. In  the groundstate sector 1 = L, the 
eigenva!ue.s ma-tch for 4 = T-2101, and in the other sectors for q4 = O .  

The critical behaviour can be classified according to the various regimes [18] 

cosh(uj-fi!3) [ cosh(uj+fi8) 

regime I O < O < ? r  

regime I1 -T< 8 < - f ~  

regime 111 -$Tr < e <O. 

In [ 141 we considered the isotropic model ($ = $T)  and calculated the free energy and 
the central charge in regime 1. Here the BA roots are real and the analysis is similar 
to that required for the O(n) model on the honeycomb lattice [7]. In particular, the 
result for the central charge is in agreement with (1.2), as to be expected on universality 
grounds. However, although allowing us to calculate the free energy, the complex 
nature of the BA roots prevented us from calculating the central charge in regimes 11 
and 111. In  this case direct numerical solutions of the BA equations (1.5) indicated that 
the ground state is described by the 2-string solution 

Im U,= *:(T+ e). (1.6) 

The finite-size corrections for eigenvalues associated with such roots have recently 
succumbed to a new analytic method [19-211. The main idea is to define a set of 
functions, related to the eigenvalue expression, that are analytic in certain strips in 
the complex plane. By choosing appropriate auxiliary functions, different strips of 
analyticity can be related and the set of functions can in some sense be solved, leading 
to exact results for the bulk and leading correction term in the eigenvalue expression. 
In this paper we derive the free energy and central charge of the anisotropic model 
(1.3) following the treatment in [21] for the 6- and 19-vertex models. 

The calculations are ordered according to their degree of complexity, beginning in 
section 2 with the treatment of regime I. The regimes I1 and 111 are then treated 
subsequently in sections 3 and 4. As an independent verification and an extension of 
the analytical treatment we present numerical results for the central charge and critical 
exponents in section 5.  The corresponding quantum spin chains are discussed in section 
6 and finally in section 7 we summarize our main results for the Izergin-Korepin model 
in the light of other recent calculations. 
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2. Regime I 

In this regime ( O <  8 < w) we derive the bulk free energy and the central charge of the 
Izergin-Korepin and solvable O ( n )  models by following the treatment given in [21] 
for the six-vertex model. 

We begin by introducing the spectral variable u = - i + + $ r  and rewriting the 
eigenvalue expression (1.4) in the form 

S 0 Warnaar et al 

with 

q ( u ) : =  n sinh(v-vj) @(U) := coshL U and 8 : = ~ - % .  (2.3) 

For convenience we have taken both I and the system size L to be even. 

I - 
j = 1  

The BA equations (1.5) now read 

p( Uj) = -1. (2.4) 
In this regime, the I = L BA roots uj, describing the largest eigenvalue, are distributed 
along the real axis. 

2.1. Nonlinear integral equation 

To derive the nonlinear integral equation analogous to that for the six-vertex model 
we begin defining two functions that are ANZ (analytic and non-zero) in strips around 
the real axis: 

a( U) := g( u ) p (  u + i t )  A(u):= l + p ( u + i t )  (2.5) 
where 

tanh p(  u + $$+i t )  Tr 

tanh p ( u - f i i + i g )  1 p:=z 
g(0) := 

and O <  t s m i n ( f 8 ,  ai). The function g ( u )  compensates for the bulk behaviour of the 
function p(u+ig)  [14]. 

Because of the ANZ property of a ( u )  we can define its Fourier transform as 
m 

a ( k ) = -  [In a ( ~ ) ] " e - ' ~ " d v  [In a(u)l"= I-, a ( k )  et'" dk  (2.7) 

and similarly for A(u).  The Fourier transform of q ( u )  is defined to be 

2?r lm -m 

. ,m+ir 

- 
[In q ( u ) ] " =  J q ( k )  e"" dk  O< Im(u) < n. 

-m 



Izergin-Korepin and soluable O(n) models 3081 

We will now derive a set of relations involving the transforms of the above functions. 
Using the definition (2.2) we write .(U) in the form 

where we have used the Ti-periodicity of q ( u )  to shift the argume'nts of the q functions. 
Taking the Fourier transform and using (A.1) from the appendix then yields 

sinh ;& _I 

a (k )=e - fk  cosh$(30-7i)k Lk . -de-*-' q ( k )  sinh$&j. (2.10) i sinh i r k  cosh @k 

Next we consider the auxiliary function 

(2.11) 

which is ANZ in a strip including the real axis, allowing the application of Cauchy's 
theorem 

m+ie --it 

-m+ie ---if 
[In h ( u ) ] " e ~ " " d u = ~  [In h(u)]"e-""du. (2.12) 

Substituting (2.11) and using (A.l) yieldst 

+ e*' A( k )  -e-" A( k )  -e*' a( k) 

Solving (2.10) and (2.13) with respect to A and A we find 

a ( k )  = F(k)A(k)-Ff(k)A(k) 

[e"A(k)-e-*' & k ) ]  
cosh& [ Lk 1 

q ( k )  =e)"' +- 
2 cosh &?k sinh ink sinh iek 

where 

F,(k):=e-2*k F ( k )  
s inhi ik  cosh$(3&7i)k 

sinh iek cosh :& F( k )  := - 

(2.13) 

(2.M) 

(2.15) 

Transforming back and inlegrating twice we arrive at a nonlinear integral equation 

ai+ 
In a ( u ) = F * l n  A-Fc*lnA+- (2.16) e 

where . r m  

F(u) :=-  F ( k j e ' " d k  F,(u):= F(u+Zit)  (2.17) 
2; km 

and f * g  denotes a convolution 
m 

( f * g ) ( u ) : = I _ _ S ( w ) g ( u - w ) d w .  (2.18) 

The integration constant in (2.16) follows from the limit u+m 

t Note that f ( k )  denotes the FT of the function y(u):=fm which is equal to /(-b 
~ 
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In order to take the thermodynamic limit (L-.oo), we make the change of variables 
P I  

1 
U:= - (x+ln L )  (2.19) 

2P 
and define the limiting functions 

a*(x):= lim n(*u)/g(*u) A,(x):= lim A(fu)=l+a,(x) .  (2.20) 
L+m L-m 

With these definitions the integral equation (2.16) gives, in the thermodynamic limit, 

where the kernel K reads 

(2.22) 

Here the functions F, and F2 are defined as 

(2.23) 

and satisfy the symmetry relations 

F , (X)=F~( -X)=F , (X)  ' q x )  = & - X I  (2.24) 

i.e. 

K'(x)=K(-x). (2.25) 

It is precisely this symmetry property which allows the derivation of the central charge. 

2.2. The central charge 

In view of the result (1.1) we are interested in the free energy per site, fL (u )  = 
-L-' In A ( u ) .  Now the eigenvalue expression (2.1) gives, to leading order 

(2.26) 

Taking the Fourier transform of the RHS, substituting (2.14) for q ( k ) ,  inverting the 
Fourier transform, twice integrating using (A.2) and substituting the finial result back 
into (2.26) yields 

In A( w) 
2i 1- [ sin4p(u-w-i[) 

A O L  _- cosh6p(u-w-i$7 =&(U)+- 

In A(.)] dw. 
sinh 4p(u - w + i t )  - 
cosh 6p(u- w+i#) 

Here the bulk free energy is given by 

(2.27) 

sinh fOk sinh f i k  e"" 
&(U) = -In[ sinh( u -:) sinh( U +:)I - 1- sinh fmk cosh(?rk/4p) -dk k 

(2.28) 

for IIm(u)l< m/4p. 
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Taking the thermodynamic limit in (2.27) and using the definitions (2.20) gives 

1 
1 

In A+(x) e-" dx 
2 8  
TL2 

fL(u) =fm(u)+-e2P" Im 

e-zp" Im[ e2pic (-: In A_(x)  e-x dx . -- 
TL2 

(2.29) 

To bypass the direct solution of the integral equation (2.21) we consider the expression 

(" (('na')'(InA, In&)-( In a, ) ( h a ,  In&)' 
_m Inh: In r I ,  

Substituting the solution (2.21) and using the symmetry property (2.25) of the kernel 
K,  this simplifies to 

In AJx) e-x dx+- (2.31) 1 =: ~ 8 8 I m  erZpif [ 
which we recognize as being of the required form in (2.29). 

We can however, calulate (2.30) exactly. Substituting A, = 1 +a,, making the 
change of variables a,(x) = z and rI,(x) = z and using al(m) = s, a*(-m) = 0, f =  l/s, 
we have lo [ y - - ] d ~ + ( ~  In(l+z) Inz I-' [---I In( l+z)  Inz  dz=L(s)+L(s- ' )=fn ' .  (2.32) 

l+Z 1 + z  

The function 

(2.33) 

is related to the Rogers dilogarithm function [22] and satisfies the functional relation 

L ( Z ) +  L(2-l)  =in2. (2.34) 

Combining (2.31) and (2.32) we have 

leading to the final result 

(2.35) 

(2.36) 

3. Regime I1 

For 0 < 0 it is convenient to introduce the variables 7 = -0 and 6 = n - q. In this 
section we give the details of the derivation of the bulk free energy and the central 
charge in the region ~ T S  q<n. The extension of the calculations to the region 
in < q s fn is straightforward but tedious and subsequently we omit the details. In 
either region the calculations are more akin to the treatment given in [ l ]  for the 
Zamolodchikov-Fateev model [23]. 
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In order to work in analyticity strips around the real axis we shift the BA roots: 
uj+ uj+filr. The eigenvalue expression (1.4) can then be written as 

with 

The functions q ( u )  and @(U) are as defined in section 2. In this case the BA roots are 
(almost) located on the lines Im(u) = &j and obey the symmetry that if p ( u j )  = -1 
then also p( 5 )  = -1, where j = 1 , .  . . , L. 

3.1. Nonlinear integral equations 

We begin by defining the functions 

a ( o )  := g (  u) p( u + $ j  +it)[ 1 + p( U - $5 + ig)] A(u):= l+ru(u)/g(u) 

1 
S(u):= 

p (  u -&j +if) 
D(u):= l + S ( u )  

which are ANZ in strips around the real axis. In this case 

57 .- ~ (3.4) 

and O<gSbj .  We define the Fourier transform of the function q ( u )  as 
m+ir -a< < < 1 -  qi(k)=- I [Inq(u)re-'*"du 4 7  2lr -m+ir 

2n -m+i, 

m+ir 

qz(k)=i( [Inq(u)J"e-'*"do - f ( 3 5 7 + q ) < r < - 5  

[In q ( u ) ] " =  \-m q,(k) e'*" dk 

[Inq(u)l"=l_pql(k)eik"dk 

m 

-4: <Im(u)<+i j  

-+(357+ q )  < tm(u) <-ai. 
m 

Again we derive a set of relations involving the Fourier transforms of the defined 
functions. First we note that not all the functions defined above are independent, we 
have 

a( k) - y(k)+S(k) - D(k) = O  

P(k)-y(k)+S(k)+C(k)=O 

A(k)-B(k)-C(k) = 0. 

(3.5) 

(3.6) 
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(3.7) 
follows using Cauchy's theorem within a strip of analyticity. It is this relation, which 
no longer holds in regime 111, which essentially makes the difference between regimes 
I1 and Ill. 

From the definition of the functions y ( u )  and S ( u )  it follows that 

where we have used the result (A.1). 
We now apply Cauchy's theorem to the auxiliary functions h,(u)= 

p(v+fi i ) [ l  +p (v -$ i ) l  and h2(u)  = (1 +p(v+$lj)[l +p(v-$7j)]}/p(v -$ilj), which 
both satisfy the non-trivial analyticity property 

"-it 

[Inh(v)]"e-""dv= [ [In h(u)l"e-'*"du. (3.9) 
J-mt ,<  J-=- i f  

e"a(k)= -e-"/?(k) 

This yields, respectively, 

(3.10) 
and 

e " [ A ( k ) + G ( k ) ] = e - S k [ A ( k ) +  6(k)l. (3.11) 

Now solving (3.6)-(3.11) and their complex conjugates in terms of the functions A(k) 
and B ( k )  we find 

a ( k )  + y(k) = F(k)A(k)+ G,(k )A(k )+  H(k)B( k) + Ht(k)B( k) 
@( k) - y (  k) = H( -k)A(k)+ H,(k)A(k)+ B ( k )  

C( k )  = A(k)  - E (  k )  (3.12) 

with 
1 e-h*k cosh i l jk e'kA(k)-e-tkA(k) + 

q2(k)=2 cosh(mk/4p) [ Lksinhf7rk 2 sinh $ljk 

sinh(?rk/4p)+2 sinhi(57 -37r)k 
2 sinh f j k  cosh(nk/4p) 

F(k) := 

2e!('n-3-)k+2e!'n+~)k - e - ( n / 4 0 ) k  -3 e ( = / 4 d k  

G ( k )  := (3.13) 
4sinhfljk cosh(nk/4p) 

,!ik 

H (  k) := - 
2 cosh f l j k '  

The functions G,(k) and H,(k) are defined as in (2.15). 

integral equations, 

riq5 
In a ( u ) + l n y ( u ) =  F*ln A+G,*ln A + H * l n  B+Ht:ln E+--;- 

7 
In P(v)- ln y ( o )  = H*ln  A + Ht *In A+ln B 

Transforming back and integrating twice we obtain a coupled set of nonlinear 

(3.14) 
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where we have defined 

S 0 Warnaar et a1 

m 

F( U) :=L F(k)  eiX" dk  
271 _* 

The integration constant in (3.14) follows from the U + m limit. 
In taking the thermodynamic limit we again make the change of variables (2.19) 

and define limiting functions ai(x) etc as in (2.20). The integral equations (3.14) are 
then given by 

The kernel K again satisfies the symmetry property (2.25). 

3.2. Central charge 

To obtain the central charge, we rewrite (3.1) as 

(3.17) 

Proceeding as in section 2.2, using the solution (3.12) for q2(k) and (A.3), we obtain 

(3.18) 
In A( w )  - 

- i f )  sinh 2p(u- w+if)  

where the bulk free energy is given by 

sinh ink sinh i j k  eiX" 
&(U) = -In[ sinh( u -:) sinh( U +:)I - I" -dk (3.19) 

-m sinh f ~ k  cosh( 7lk/4p) k 

for IIm(u)l< 7l/4p. In the limit of large L this gives 
- r P m  1 
L 

f L ( u ) = f m ( u ) + ~ e 2 P " I m  7lL 

In A _ ( x )  e-" dx (3.20) 
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Substituting (3.16) and using the symmetry property (2.15) of the kernel K ,  this becomes 

(3.22) 

On the other hand, substituting A, = 1 +a,, E ,  = 1 + b,, using In C, = In A, -In E ,  
and making a change of variables, gives 

f161m[ei2'"I_m_1nA,(x) e-'] dx+- 2ml#12 

i : '  

L ( s ( s + ~ ) ) +  L ( ( s +  i)/s2)+ r ( s 2 / ( s +  i ) ) + ~ ( i / ( ~ ( ~ +  1))) 

+ L(s )+  L( l /s )  = n2. (3.23) 

To obtain this expression we have used the asymptotic behaviour of the functions 
a*(x) ,  b,(x) and c+(x). Specifically, a , (m)=s(s+l) ,  b,(m)=s2/(s+1), c,(m)=s 
and a,(-m)= b,(-m)=c,(-oo)=O. 

Combining (3.22) and (3.23) then gives 

Im[ei2'" /-:InA+(x)e-'] d x = F g ( - - T )  3 31#12 
24 2 mv 

leading to the final result 

(3.24) 

(3.25) 

4. Regime 111 

In this section we consider the region O <  7 < m/3. The largest eigenvalue is given by 
(3.1) with the BA roots again located near the lines IIm(u)l =&j. However, although 
the location of the roots is the same as for regime 11, the derivation of the bulk free 
energy and the central charge for regime I11 is dfferent due to the more complicated 
nature of the analyticity strips. 

4.1. Nonlinear integral equations 

We will use the same set of functions as defined in (3.3), but now with 

(4.1 ) 
7I 

In addition the Fourier transform of the function q ( u )  is as defined in (3.5). The trivial 
relations (3.6) still hold and furthermore, the non-trivial relations (3.10) and (3.11) 
are still valid. However, as alluded to in section 3.1, it is the relation (3.7) that no 
longer holds. 

From the definition of the functions y ( u )  and S(u) we now have 

(4.2) 
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Solving (3.6). (3.10), (3.11) and (4.2) and their complex conjugates in terms of the 
functions A(k), B(k) and D(k),  where it should he noted that there is no unique way 
of writing the solution, we find 

a (k )+  y ( k )  = F(k)A(k)  + G,(k)A(k) + H(k)B(k) + H,(k)B(k) - H(-k)D(k) 

+ H,(k)d(k) - I,(k)A(k) + I , ( k ) B ( k ) +  I (k)D(k)  

P(k) - ~ ( k )  = H(-k)A(k)+ H,(k)A(k) + B(k) 

+ I,(k)A(k) - l*(k)S(k) - I (k)D(k)  

S(k) = H(k)A(k)- H,(k)A(k) - I (k)A(k)+  I(k)B(k)+IJk)D(k) 

C (  k) = A( k) - E (  k) 

1 L k c o s h $ ( r + v ) k  - eShA(k)-e-"A(k) 
q ' (k)=2 cosh(rk/4p) l [  sinh f r k  2 sinh fqk  

e"[A(k) - B(k) + D ( k ) ]  = e-"[A(k) - B(k)+ D(k)] 

with 

(4.3) 

sinh iqk  -sinh fqk-sinh f ( r  -2q)k  
Zsinhfqkcosh:(r+q)k cosh(mkl4p) 

F(k) := 

e l n h  -efn*-e~(n-2n)*+e-fn* 
G(k):=- 

4sinh ivk  cosh!(r+v)k cosh(rk/4p) 

e-%n+v)* 

2 c o s h $ ( r + q ) k  
H(k):=-- 

(4.4) 

cosh( rk /4p)  
cosh a(r + v)k .  

I (k) := 

The functions G,(k), H,(k) and I , (k )  are defined as in (2.15). It is the last equation 
of (4.3) that allows the freedom to write the above solution. We note, however, that 
only the form chosen above leads to a symmetric kernel. 

The set of nonlinear integral equations 

In a (u)+ln  y ( u )  

= F*ln  A +  G,*ln A+ H *In E +  H,*ln B -  H*ln  D 

mi@ + H,*ln D- I,*ln A+ &*In B+I *In D+- 
7 

InP(u)-ln v(u) 

= H * In A + H, *In A+ In B + I, * In A- I, * In B- I * In D 

-In S ( v )  = -H *In A +  H,*ln A+ I *In A - I *In B -  &*In 6 

(4.5) 
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follows after transforming back and integrating twice. Here we have defined 
m 

F ( v ) : = I I  271 ~m F ( k ) e i k " d k  

G(k)  ei*("-jr) dk  Ge(u):= G(v+2i5) 

H ( k )  eiX("-")dk He( U )  := H( v + 2ig) 
(4.6) 

m 

I ( v ) : = &  I ( k )  e;'" dv Ie(o):= I ( u f 2 i t ) .  
271 _m 

The integration constant in (4.5) follows from the v+oo limit. 
In the thermodynamic limit the above integral equations (4.5) are given by 

Inb , - Inc ,  

In +In E ,  

1.. _I , -111 Ut , 
The kernel K again satisfies the symmetry property (2.25) 

4.2. Central charge 

Proceeding as in section 3.2 we find 

[ In A+(x) eCX dx] 
2 

f L ( u )  = f m ( v ) - i  e2'" Im e-2pic 
T L  

(4.8) 

Substituting (4.7) and using the symmetry of the kernel K this becomes 

Instead of the identity (3.23) we are led to 

L ( S ( S + l ) ) +  L ( ( s + l ) / s 2 )  
+ L ( s 2 / ( s ' +  I))+ L(l/(s(s+ 1)))+2L(s)+2L(l /s)  =$71' (4.11) 
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where we have used that the asymptotic behaviour of the functions o*(x), b,(x)  and 
c&) is as in section 3.2 and I/d,(m) = s, l/d*(-m) = 0. 

S 0 Warnaar et a/  

Combining these last equations gives 

and finally 

(4.12) 

(4.13) 

5. Numerical results 

In spite of the fact that the BA has allowed us to compute the central charge for this 
class of models it is clear that the analytical technique is quite involved. For this reason 
we have supplemented the analytical study with extensive numerical calculations. These 
allow us: (i) to verify independently the analytical results; (ii) to extend the analysis 
to critical exponents, which would otherwise require extensive additional analysis; and 
finally (iii) to verify plausible but unproven assumptions concerning the auxiliary 
functions. 

Our analytical results in regime I basically confirm those obtained earlier in [7] 
and do not leave many open questions. Therefore we have concentrated our numerical 
efforts primarily on regime III and somwhat less on regime 11. The results for the finite 
size corrections of the largest and other eigenvalues yield besides the central charge 
also the critical indices x of the model from the relation [SI 

7rc 2TIx 
InA--Lf=+--- 

6L L ' 

Thus the critical exponents are obtained from the difference of the finite size amplitude 
between the largest eigenvalue and the other eigenvalues. For convenience in the 
presentation we will take the two contributions to the finite size amplitude of (5.1) 
together in an effective central charge 

c,,:=c-12x (5.2) 

In regime I1 the largest eigenvalue in the sector with I BA roots yields the effective 
equal to 6 1 ~ 1  times the amplitude of the I / L  term. 

central charge 

(5.3) 

The finite system results readily converge to these dependences so that these results 
can be given with confidence even though they have been obtained from numerical 
calculations. Clearly for I = L the analytical result (3.25) is recovered. 

Another set of eigenvalues is found if two of the BA roots are taken to be real while 
the remainder still lives on the 2-string. In the sector I = L the teff is then decreased 
by 12, and for I =  L - 2  by 36, irrespective of 8 and @. 

In regime 111 the picture is considerably more involved. In the first instance the 
finite-size amplitude for systems with small or zero value of the seam parameter + 

3 3 4 2  3(TI+8)(L-1)2 
2 Tr(TI+8)- TI 

CCff = -- 
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converge very slowly. Even from strips of hundreds of sites wide, only one or two 
decimal places could be obtained with confidence for any given value of 0 and 4. 
Nevertheless, by combining the results for different values of these parameters and 
assuming that the finite-size amplitude is a simple rational function, we find for the 
largest eigenvalue in each sector 

3 ( ~ - 1 ) ~ e  342  c.,=2+ +- 
Tr ?re (5.4) 

with 
4 s  -(i+lL-ll)e,  

Again in the ground state sector l = L the analytical result (4.13) is recovered. For 
larger values of 4 the convergence suddenly improves and the finite-size amplitude 
readily converges to a different limit 

now with 
4 a - ( t + l ~ - l l ) e .  

The convergence is quite rapid and has been verified in very many cases in the proposed 
region of validity. We note that it is as yet unclear why the simpler equation (5.4) and 
therefore (4.13) breaks down. We have observed that the maximal deviation of the 
Im U, from the value ( ~ r + 0 ) / 4  increases with 4. Though most of the roots approach 
this line in the thermodynamic limit, those at the ends of the string remain at a non-zero 
limiting distance from it. Therefore the strips of the complex plane in which the function 
p (3.2) is ANZ, decrease and eventually vanish with increasing 4. Even though this 
appears to be a serious problem, the failure of the final result does not even nearly 
coincide with the closing of these strips. 

Again other eigenvalues of the transfer matrix can be constructed by taking some 
of the e*”) real (positive or negative) rather than in complex conjugate pairs. With two 
real roots, for example, we obtain 

for 4 s -3.9 

for$  a -38. 

3 8  2+- 

3(4  -357)’ 
1-25: q ( V + e )  

C d f  = 

6. Quantum spin chain 

The quantum spin chain associated with the AY) model of Izergin and Korepin [I21 
has recently been discussed for both periodic [24] and open [25]  boundary conditions, 
with in the latter case additional boundary terms included to ensure Uq[su(2)]- 
invariance. For twisted boundary conditions, the Aiz1 Hamiltonian is given by 

H =  E 1 {cos ; 8 7 1 + ~ ~ ~ f e ~ ; - 4  sin’ie sin40 sin e(TjT;+T;T,+) 
L 

j - I  

-4 sin2 4 0  cos $9(s;)’+2 sin3 f e  sin e[(  - (T;)’] 

+ ii sin 20[ T,+( S;+l - S;) + (S;+l - S ; ) T ~  + 2  cos $ST;(  S;+l - S;)] 
+COS ;e -2  COS 4s-cos;e) (6.1) 



3092 S 0 Warnaar et a1 

where S =  (S", Sy, S')  i s  a spin-1 operator and 

r.=s..s. =,A+.? r?  = S'S? 
I , , + I .  I , 1 * 1  I I 

The twisted boundary conditions are defined by 

with periodic boundary conditions recovered when # =O. 
The prefactor E in (6.1) is E = 1 for 9 < 0  (antiferromagnetic region) and E = -1 

for 9 > 0  (ferromagnetic region). The eigenstate energies of (6.1) follow from (1.4) in 
the usual manner: 

(6.4) 

yielding 

1 L 
E = E  sin2 9 cos 39 1 (6.5) 

j = l  cosh2uj+cos 9 

where the roots U, are determined by the BA equations (1.5). 

of the ground state energy per site, e, = E,/ L, is given by 

,,-:-- c\ -~., 
~ b n t t :  (6 .2 j  anu me resuiis (2.;6), (5.25) and (4.ijj, the ieading-order behaviour 

dk--- 
sinh 9k coshf(a-8)k 

_m sinh ?ik cosh !(a - 9)k 6L2 3 ( a  - 8) 

forregime I ( 0 < 9 < a ) ,  

dk--- 
6Lz a + 3 0  

sinh( a+  9)k cosh f (  ?r+ o)k 
s inhak cosh+(?r+;O)k 

e, = sin 9 cos is[ [-a 
forregime 11 ( - ? r se<- fa )  and 

(6.7) 

forregime 111 ( - fa<8<O) ,  with @<-e. 

I. Summary and conclusions 

Collecting our main results for the bulk free energy, the central charge and critical 
exponents of the Izergin-Korepin model with twisted boundary conditions we have 

.fL(o)=-ln[sinh( u - 2 )  sinh( u + s ) ]  

+o(L-') (7.1) 
sinhi19lk sinht(?r-10l)ke'*" a c  cosh 2pu 

6L' 
- -dk- I-, sinh f a k  cosh(ak/4p) k 

where p = a / ( 3 a - 3 9 )  for regime I, and p=/?i/(n+39)1 otherwise 
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The dominant size dependence is controlled by the central charge c 

(7;2a) c = 1 - -  342 regime I 
a0 

(7.26) 

There are several checks on these results. For v = 0 we recover our previous 
expressions for the hulk free energy (and for the central charge in regime I)  obtained 
via the root density approach [ 141. Also for U = i( a - 0)/4 [ 1 1 1  we obtain the known 
results for the honeycomb lattice [4,7]. In addition, the Izergin-Korepin model 
coincides with the Zamolodchikov-Fateev model [23] at 0 = *;a [ l l ,  251. At 0 = -!a 
we find agreement with the results derived in [21] for the bulk free energy and the 
central charge of the Zamolodchikov-Fateev model with twisted boundary conditions 
at y=$?r (in their notation). We have also confirmed the above results by extensive 
numerical solutions of the BA equations. 

From (7.2) it follows that the central charge of the solvable square lattice O ( n )  
model, n = -2 cos 20 is given by 

3(a-2e)2 
regime 1 c = l -  

a0 

3 3 ( ~ + 2 0 ) ~  regime 11 c = - -  

regime I11 c = - l +  

2 m ( a t 0 )  

1202 
m ( m +  e) 

(7.3a) 

(7.36) 

(7.3c) 

These results confirm the conclusions based on numerical results obtained from the 
loop version of the O ( n )  model [IS] and from the BA equations [14, IO]. 

Critical exponents of the O ( n )  model for regime I1 are given by 

(7.4) 

for N = 1 , 2 , .  . . , besides an exponent x = 1 independent of 0. These results confirm 
the observation [le] that this model appears to behave as a product of a critical lsing 
model and an O ( n )  model in regime I, with 8 increased by a. 

In regime 111 we find from (5.4) and (5.5) the O ( n )  model exponents 

0' 1 N20 
X N  = a ( m + e )  4 4 a  

. and in addition, from (5.6) 
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A point of particular physical interest in this regime is 0 = -an, where the model 
describes the @-transition of self-avoiding walks [18]. Specifically we find for this 
transition the exponents xH = -&, xT =A and x, =? as obtained from the sectors 
N = 1, 2, 4 of ( 7 . 5 )  respectively. (At this value of 0 the eigenstate at the basis of (7 .6)  
reduces to the N = 2  solution of ( 7 . 9 . )  These exponents are different from those 
obtained by Duplantier and Saleur [26] in another model describing the same 
phenomenon. The relative stability of these two candidates for the @-point has been 
discussed in [HI ,  with the result that, at least within the particular class of models 
considered there, which contains both universality classes, the point discussed in [ 2 6 ]  
has three relevant thermal fields, while the point in regime 111 has only two. This 
indicates that a generic @-point is governed by the latter. Here we confirm that the 
next thermal exponent (x6=g) is indeed irrelevant. The lack of unviersality that we 
seem to find shows up in the bulk exponents, and not only in the surface exponents. 
This is in contrast to the discrepancy between the 0 and 0' points, which has been 
resolved recently [27]. 

We have also derived the ground state energy and the central charge of the related 
quantum spin chain. The results derived in section 6 are in agreement with the 
Zamoldochikov-Fateev results at the corresponding points. In particular, we note that 
at 0 = fn we recover the known results for the ground state energy and the central 
charge of the ferromagnetic Zamolodchikov-Fateev chain [28] (at E =  -1 and y =+TI 
in their notation). 

Our results for the Izergin-Korepin model disagree with those obtained for the 
periodic AY' model [24]. In particular, the value c = n has been derived for the more 
general AL2' models assuming a specific distribution of BA roots for the largest eigenvalue 
[24], with roots on the real axis and on the line Im v = in. We have found no evidence 
for this distribution in the n = 2 case. Rather, the largest eigenvalue is characterized 
by real roots in regime I and by a two-string in regimes I1 and 111, verified by complete 
diagonalization for small systems, and by independent numerical studies [18]. Con- 
sequently we find that the central charge assumes the regime-dependent values c = 1, 
1 and 2. An investigation of the more general AL2' models is currently in progress. 
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Appendix 1. Collection of relevant integrals 

Here we collect some integrals used in the main part of the paper: 
nk e ( o - m P / o ) k  n n 

n2 sinh(rkj2n)  n n e'*" do  = ( m  - 4) - < p < ( m  + f )  - (A.1) 
1 

sinh 2nk i n  sinh(nv/3n) 
&a cosh(nv/Za) 

e dk=- 

with in each case n > 0. 
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